<u>Statistical Applications</u> <u>Using Minitab</u>

May 14, 2014 Larry Bartkus

Los Angeles Section ASQ

The Statistician

The Statistician is a person who poses as an exacting expert on the basis of being able to turn out with prolific fortitude infinite strings of incomprehensible formulae calculated with micrometric precision from vague assumptions which are based upon debatable figures taken from inconclusive experiments carried out with instruments of problematical accuracy by persons of doubtful reliability and questionable mentality.

Key Take-Aways

- Minitab is a Simple and Powerful Tool in Data Analysis and Display
- Always try to Graphically Display your data
 - Easier to understand
 - Draws picture of what is really happening
 - Check for Patterns
 - Is it Normal?
 - Time Series for trends, changes, effects
- Organize and Plan you Data Collection first
- Analyze the results and recheck any assumptions
- Have Fun. Software has made data analysis easier, faster, and funner!

A Warm-up Look

- First record 10-15 data points in the first column.
- Let's name the column
 "Results"
- Go to Stat>Basic Statistics>Graphical Summary

<u>Stat</u> <u>G</u> raph E <u>d</u> itor <u>T</u> oo	ils <u>W</u> indow <u>H</u> elp
Basic Statistics	► X _S Display Descriptive Statistics
Regression	▶ Store Descriptive Statistics
ANOVA	▶ 雪葉 Graphical Summary
DOE	17 1-Sample Z
<u>C</u> ontrol Charts	11 1-Sample t
<u>Q</u> uality Tools	21 2-Sample t
Reliability/Survival	• t-t Paired t
Multivariate	+ <u>-</u>
Time <u>S</u> eries	P 1 Proportion
<u>T</u> ables	2P 2 Proportions
Nonparametrics	SP 1-Sample Poisson Rate
<u>E</u> DA	sp 2-Sample Poisson Rate
Power and Sample Size	σ^2 1 Variance
8	2) of of 2 Variances
9	1 COR Correlation
10	2 COV Covariance
11	
12	24 TEST Mormancy rest
13	$2\{\chi^2 \text{ Goodness-of-}_{Eit Test for Poisson}$
14	30
15	28
16	
17	

How Do I Look At The Data ?

- It's PGA, Baby!!
 - <u>Practical</u> (Are there any obvious problems or patterns?) ANOB or ANOG
 - <u>Graphical</u> (Look at the Pictures)

Two different situations, two histograms requiring different approaches

- Analytical (Check out the Statistics)

You should end up with something like this

- E - E - II - E - II - II - II - II - II	the second se			•			<u> </u>				5 🔛 💷	25						
≌ '	- 🖉 -	+ ₽ ≠ [N	(9				T□	$\circ \land \circ$							
ject Manager 📃 🔍	Wo	orksheet 1 **:	*															<u>_ ×</u>
orksheet 1	÷	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C1:▲
		Results																
	1	18																
	2	17				Graphical Sur	nmary				×I							
	3	25				C1 Deculto		Variables										
	4	31				C1 Results		Results										
	0	10																
	7	25						I		▼								
	8	23						By variables (optional):									
	q	19																
	10	21								-								
	11	18						,										
	12	24						Confidence le	vel: 95.0									
	13	28																
	14	30																
	15	28				Select	:											
	16																	
	17					Help		OK		Cancel								
	18																	
	19																	
	20																	
	21																	
	22																	
	23																	
	24																	
	25																	
graphical summary																		
t 🛛 🥶 🖸 🚱 👋 🕒 My	Docume	ents	💽 Micro	osoft Power	Point - [📘 Ninita	b - Untitl	ed						« 💪 🛒	(p) 💑 🕘 (ile 😓 🌭 💈	V2 🕢 😓	9:14 PM

And a Graphical Summary

American Society for Quality

More About Displaying Data

A histogram is a graphical display of tabulated frequencies, which are shown as bars. It illustrates what portion of cases fall into each of several categories.

Lets look at an example for the following data:

4,9,7,2,11,7,12,6,8,5,3,8,7,6,9,4,9,6,5,10, 8,5,7,3,8,6,10,9,10,7,11,6,8,5,4,7.

The histogram would look like this:

A Quantitative Look At The Data

How about this data: 4,9,7,5,10,7,11,8,8,5,3,8,9,5,9,3,5,9,5,10

6,7,9,4,8,2,10,8,10,6,8,6,8,5,4,11.

How Does The New Data Set Look?

The Mean is the same and the Std Dev is almost identical, but the shape of their distribution is very different. What type of distribution is this?

Distributions

Non-Normal Distributions

A. Normal Distribution

B. Skewed Distribution

C. Exponential Distribution

Checking Many Distributions At The Same Time

BES.MP	ני				
<u>C</u> alc	<u>Stat</u> <u>Graph</u> Editor <u>T</u> ools	Window Help			
(🗈	Basic Statistics	A & 0 ? I	-6 🖨 🔂 🎽) 🗐 🍖 4	i (🖀 🏢
21	Regression		<u>,</u>		
L-III	ANOVA			1	
	<u>D</u> OE			<u> </u>	$\Box \cup \land$
	Control Charts	≓I			
	Quality Tools 🔹 🕨	📈 Run Chart			
nitah	Reliability/Survival	Pareto Chart	C3	C4	C5
umma	<u>M</u> ultivariate	→ <u>C</u> ause-and-Effect	Nat Log	Limits	Log10Lim
	Time <u>S</u> eries	Mainter Individual Distribution Identification	5.29832	1000	
	Tables	Johnson Transformation	6.08677	2000	
	Nonparametrics	Capability Analysis	5.39363		
	<u>E</u> DA ►	Capability Sixpack	7.00307		
	Power and Sample Size 🕨		4.38203		
	6	Gage Study	4.00733		
-		✓ _× Attrib <u>u</u> te Agreement Analysis	4.09434		
	8	Acceptance Sampling by Attributes	7.43838		
	9	A cooptance Sampling by Variables	4.60517		
	9576 Co 10	Acceptance sampling by variables	5.29832		
n-	11	✓ Multi-Vari Chart	5.07517		
2.5	12	Symmetry Plot	4.70048		
	13	170 2.23045	5.13580		

American Society for Quality

Individual Distribution Identification

C1 Aerobes	Data are arranged as	Box C
C2 Log10	© Single column: Aerobes	DOX-CO
C4 Limits	Subgroup size: 1	Jonnso
	(use a constant or an ID column)	Optior
	C Subgroups across rows of:	Result
		
		-
	Use all distributions and transformations	
	O Specify	
1	Distribution 1: Normal	•
Select	Distribution 2: Exponential	•
	Distribution 3: Weibull	-
	Distribution 4: Gamma	-
		OK
Help		Cano

Here Is What You Get

Holy Crap !

American Society for Quality

Transformation

Your Data Analysis Choices

- Normal Distribution (Bell Curve)
- Transform to Normalize the Data
- Utilize Non-parametric Statistics
- Treat as Discrete (Attribute Data)

Transformations

Make a transformation of the original characteristic to a new characteristic that is normally distributed. These transformations are useful for (a) achieving normality of measured results, (b) satisfying the assumption of equal sample variances required in certain tests, and (c) satisfying the assumption of additivity of effects in certain tests.

From Joseph Juran, Quality Control Handbook

Some Things Just Aren't Normal

American Society for Quality

Testing For Normality

≽ Minitab -	DATADIST.	мрј																	_	. 8 ×
<u> </u>	D <u>a</u> ta <u>C</u> alc	<u>S</u> tat <u>G</u> ra	ph E <u>d</u> ito	r <u>T</u> ools	<u>W</u> indo	w <u>H</u> elp														
🖻 🖬 é	3 🕺 🕹	<u>B</u> asic S	Statistics	×.	× _{s D}	isplay Descri	ptive Statistics	*] 🖬 🗟 () 🖻 🗐 🅇			🖌 f _* -		<u>e v a</u>					
		- <u>R</u> egre	ssion	•	XS ≥	tore Descript	tive Statistics	F				$\overline{}$								
		ANOV	A	•	晶 語 留 留	raphical Sum	mary			<u> </u>	, 10,									
E, Session		DOE		•	1Z 1	-Sample Z				07			040	011	040	0.40	044	045	_	
Results	for: HISTO	<u>C</u> ontro	ol Charts	•	1t 1	-Sample t			C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	1
Probabil	ity Plot of	e <u>Q</u> ualit	y Tools	•	2t 2	Sample t														
	🕂 Probab	oi Re <u>l</u> iab	ility/Surviv	al 🕨	t-t B	aired t														_
Probabil		Multiv	ariate	•	10.1	Dreparties				1										
		Time S	eries	•	20.2	Proportions	•			-1										
	- 99-	<u>T</u> ables	;	•	2P 2	-Sample Pois	son Pata													
		Nonpa	arametrics	•	SP -	-Sample Pois	son Pate													
Welcome	95 -	<u>E</u> DA		•	SP 2	oumpie roja.	Sonnaach													
Retrievi	1 90 -	Power	and Samp	ole Size 🕨	σ^2 1	Varianc <u>e</u>														
	80 -		9		°1 ₀₂ 2	Variances														
	± ⁷⁰ 10					orrelation														
	0.0		11		COV C	lo <u>v</u> ariance														
			12			lormality Tes	t													_
	20 -		13		TEST															
	10 -		14		<mark>. χ*</mark> σ	oodness-of-	Fit Test for Poisson													
	5-		15		4	3	-2													
느니			17		9	5	-2													
	1-	44	18		6	9	1													
		0	19		5	5	2													
			20	1	0	10	-3													
			21		8	6	-1													
			22		5	7	2													
			23		7	9	0													
			24		3	4	4													
			25		8	8	-1													
			26		6	2	1													
			27	1	U	10	-3													
Test whether o	data follow a r	normal distrib	ution																	
🍂 Start	🧉 🖸 🚱	» 🐴 D	ataDistribu	utions.ppt		🕙 Quality	Tools & Statistics	C ASQ		<u></u>	My Documer	nts	📄 📐 Min	itab - DATA	DIST			« 🛒 😵 ダ	₩ V2 6:	47 PM

A Study - Aerobes

Example of Need for Transformation

What the heck happened here?

Transformation to Log Values

	<u>Aerobes</u>	<u>Log10</u>	<u>Nat Log</u>
1.	200	2.30103	5.298317
2.	440	2.643453	6.086775
3.	220	2.342423	5.393628
4.	1100	3.041393	7.003065
5.	80	1.90309	4.382027
6.	55	1.740363	4.007333
7.	60	1.778151	4.094345
8.	1700	3.230449	7.438384
9.	100	2	4.60517
10.	200	2.30103	5.298317
11.	160	2.20412	5.075174
12.	110	2.041393	4.70048
13.	170	2.230449	5.135798
14.	210	2.322219	5.347108
15.	3600	3.556303	8.188689
16.	90	1.954243	4.49981
17.	85	1.929419	4.442651
18.	35	1.544068	3.555348
19.	430	2.633468	6.063785
20.	180	2.255273	5.192957
21.	5	0.69897	1.609438
22.	15	1.176091	2.70805
23.	1	0	0
24.	30	1.477121	3.401197
25.	10	1	2.302585
26.	10	1	2.302585
27.	20	1.30103	2.995732
28.	15	1.176091	2.70805
29.	20	1.30103	2.995732
30-	15	1.176091	2,70805

Normality Test of a Transformation

Before

After

So how did we know to take the Log value in order to normalize our data?

Minitab Application of Box Cox Transformation

≽ Minitab - A	AEROBES.	мрј														_ & ×
Eile Edit	D <u>a</u> ta <u>C</u> a	lc <u>S</u> tat <u>G</u> rap	h E <u>d</u> itor	Tools	Window Help											
🛥 🖬 🚑	3 🕺 🕹	Basic St	tatistics	• •	₩ 🔏 🚫 የ 🗊 🗌		🖶 🔂 🖸 🖻 🗟 👘		🔳 🔀 🕽	f _* - <u>2</u> - <u>5</u>	i 🎝 🏘 🖓	\$.A. O	3			
	_	ANOVA		•						-						1=1-11
Session		DOE		• •	***		62				67		60	040	644	
Retrievin	g proje	ct <u>C</u> ontrol	Charts	•	BOX Box-Cox Transformation	on	C3	C4		C6	C/	60	Ca	C10	C11	
II —	19/5	20 Quality	Tools	•	Variables Charts for S	ubgroups > 2 30103	5 29832	1000	LogioLini							
	- Sum	na Reļiabili	ty/Surviva	al 🕨	Variables Charts for In	dividuals 2 64345	6.08677	2000								
Welcome 1		Multivar	riate	•	Attributes Charts	2 34242	5 39363	2000								
Retrievi		Time <u>S</u> e	eries	•	Time-Weighted Charts	▶ 3.04139	7.00307									
Summary 1		<u>T</u> ables		•	Multivariate Charts	▶ 1.90309	4.38203									
-		Nonpara	ametrics	•	55	1.74036	4.00733									
		EDA		•	60	1.77815	4.09434									
		Power a	and Sampl	e Size 🔸	1700	3.23045	7.43838									
Welcome 1			9		100	2.00000	4.60517									
Retrievir			10		200	2.30103	5.29832									
			11		160	2.20412	5.07517			1						
		6	12		110	2.04139	4.70048									
			13		170	2.23045	5.13580									
			14		210	2.32222	5.34711									
			15		3600	3.55630	8.18869									
			16		90	1.95424	4.49981									
Π	Mean		17		85	1.92942	4.44265									
	Median		18		35	1.54407	3.55535									
		35	19		430	2.63347	6.06379									
			20		180	2.25527	5.19296									
			21		5	0.69897	1.60944									
			22		15	1.17609	2.70805									
			23		1	0.00000	0.00000									
			24		30	1.47712	3.40120									
			25		10	1.00000	2.30259									
			26		10	1.00000	2.30259									
			27		20	1.30103	2.99573									
			28		15	1.17609	2.70805									
			29		20	1.30103	2.99573									
			30		15	1.17609	2.70805									
			31													
			22													
			24													
			34													
			36													
			37													
																الحر
			<u> </u>													
Perform a Box-C	Cox transf	ormation of nonr	normal pro	cess data			1					_				
🍊 Start 🔡 🍯	9 🙆 🕻	🤰 🎽 📋 Inb	pox - Micro	soft	🗀 ev3Training	🔚 My Documents	Statistical Analysis	Micros	oft PowerPoi]] 📂 Minita	ab - AEROB	. 📐 Minit	ab - AEROBES.	< 🕓	Se 😫 🔌 7	9:50 AM

Box Cox Transformation

A transformation was considered in order to normalize the data and produce a more accurate and predictable distribution pattern. The Box-Cox Plot of the data was generated to assist in the transformation process. The plot was produced for the data as follows:

λ (Power)	Υ ^λ	Common Names					
-2	$\frac{-1}{Y^2}$	Reciprocal (inverse) squared					
-1	<u>1</u> Y	Reciprocal (inverse)					
-0.5	$\frac{1}{\sqrt{Y}}$	Reciprocal square root (inverse)					
• • • •	Ln(Y)	Log					
0.5	√Y	Square root					
1	No transformation						
2	Υ2	Squared					

The Rounded Value for this transformation was calculated at 0.00 thus suggesting a Log (Ln(Y)) Transformation per the Box-Cox Methodology. This again was not atypical since microbial data frequently exhibits itself in an exponential manner. Both a Natural Log and a Log Base 10 transformation were calculated on the original data set using the calculator function in Minitab 15.

Data set – 200, 440, 220, 1100, 80, 55, 60, 1700, 100, 200, 160, 110, 170, 210, <u>3600</u>, 90, 85, 35, 430, 180, 5, 15, 1, 30, 10, 10, 20, 15, 20, 15.

Conclusion

The sample with a reading of 3600 is expected to occur approximately 1 out of every 67 readings on an average and should not be considered extreme based on the distribution of the data. The sample with this count of Aerobes should be identified through a gram stain to determine the nature of its source, but unless abnormal concerns are raised based on the type of microorganism, no additional action should be taken.

And if you can't do a valid transformation

Common Nonparametric Tests

NONPARAMETRIC	FUNCTION	PARAMETRIC
1-Sample Sign*	Test the median for 1 sample Test difference in dependent samples	t test or z test
1-Sample Wilcoxon*	Test the median difference in dependent samples	t test or z test
Mann-Whitney*	Test the median difference in 2 independent samples	t test or z test
Chi-Square/ Spearman's Rank	Test relationships	Correlation / Regression
Kruskal-Wallis/ Mood's Median*	Test the median difference in many independent samples	ANOVA
Siegel-Tukey (not in Minitab)	Test differences in spread of 2 independent samples	F test
Friedman	Test if two factors are significant	2 – way ANOVA
Runs Test	Test for Randomness	No equivalent

Outliers

The "Oh Crap" data point aka the Outlier

- An outlier is an observation point that is distant from other observations.
- An outlier may be due to variability in the measurement or it may indicate experimental error: the latter are sometimes excluded from the data set.
- An outlier may be caused by a defective unit or a problem in the process.
- ISO 16269 defines it as "member of a small subset of observations that appears to be inconsistent with the remainder of a given sample."

- There is no rigid mathematical definition of what constitutes an outlier; determining whether or not an observation is an outlier is ultimately a subjective exercise.
- Every effort must be made to determine what is causing the outlier to exist. Testing, equipment, operator error, materials, etc. all must be reviewed and assessment made.

- ASTM E178-08 "Standard Practice for Dealing with Outlying Observations"
- ISO 16269-4:2010 "Statistical interpretation of data – Part 4: Detection and treatment of outliers"

- Model-based methods which are commonly used for identification assume that the data are from a normal distribution, and identify observations which are deemed "unlikely" based on mean and standard deviation:
 - Chauvenet's criterion
 - Grubbs' test for outliers
 - Peircece's criterion
Other methods flag observations based on measures such as the interquartile range. For example, if Q1 and Q3 are the lowest and upper quartiles respectively, then one could define an outlier to be any observation outside the range:

$$[Q_1 - k(Q_3 - Q_1), Q_3 + k(Q_3 - Q_1)]$$

http://www.physics.csbsju.edu/stats/box2.html

Figure 6. Box plots showing the individual scores and the means.

http://onlinestatbook.com/2/graphing_distributions/boxplots.html

The plot may be drawn either vertically as in the above diagram, or horizontally.

http://www.netmba.com/statistics/plot/box/

The boxplot is interpreted as follows:

- The box itself contains the middle 50% of the data. The upper edge (hinge) of the box indicates the 75th percentile of the data set, and the lower hinge indicates the 25th percentile. The range of the middle two quartiles is known as the inter-quartile range.
- The line in the box indicates the median value of the data.
- If the median line within the box is not equidistant from the hinges, then the data is skewed.
- The ends of the vertical lines or "whiskers" indicate the minimum and maximum data values, unless outliers are present in which case the whiskers extend to a maximum of 1.5 times the inter-quartile range.
- The points outside the ends of the whiskers are outliers or suspected outliers.

Outlier determination can be tricky!

Data set – 200, 440, 220, 1100, 80, 55, 60, 1700, 100, 200, 160, 110, 170, 210, <u>3600</u>, 90, 85, 35, 430, 180, 5, 15, 1, 30, 10, 10, 20, 15, 20, 15.

Conclusion

The sample with a reading of 3600 is expected to occur approximately 1 out of every 67 readings on an average and should not be considered extreme based on the distribution of the data. The sample with this count of Aerobes should be identified through a gram stain to determine the nature of its source, but unless abnormal concerns are raised based on the type of microorganism, no additional action should be taken.

- Outliers must be investigated
- Use the tools found in root cause analysis
 - Interview operators
 - Evaluate the measuring system
 - Try to duplicate the reading
- Don't make assumptions or jump to conclusions
- Do not remove outliers simply because they are outliers

Note that outliers are not necessarily "bad" data-points; indeed they may well be the most important, most information rich, part of the dataset. Under no circumstances should they be automatically removed from the dataset. Outliers may deserve special consideration: they may be the key to the phenomenon under study or the result of human blunders.

Control Charts

The World of Control Charts

Control Charts

≽ Minitab - Untitled						_ # ×				
<u> </u>	<u>Stat</u> <u>G</u> raph E <u>d</u> itor <u>T</u> ools <u>W</u>	(indow <u>H</u> elp								
- 	Basic Statistics		-£ 🖬 🗟 🛈	💈 🛢 📬 🖄 📖 📰 🔲	属					
	Regression									
	ANOVA +									
Project Manager	Control Charts BO CO	X Box-Cox Transformation								
Worksheet 1	Quality Tools	Variables Charts for Subgroups	C6 C7	C8 C9 C10	C11 C12 C13	C14 C15 C16 _				
	Reliability/Survival	Variables Charts for Individuals 🕨 🚟 I	-MR							
	Multivariate	Attributes Charts	-							
	Time <u>S</u> eries	Time-Weighted Charts	<u>c</u> -mr							
	Tables •	Multivariate Charts	ndividuals							
	Nonparametrics	MR N	Moving Range							
	EDA •									
	Power and Sample Size									
	8									
	9									
	10									
	11									
	12									
	13									
	14									
	15									
	16									
	17									
	18									
	19									
	20									
	21									
	22									
	24									
	25									
Welcome to Minitaly group Eff	1 far hala									
Report I a Press F1		unt a 🕞 au Training	Rivel Balt	1 20 Control Charte cont	DE DET 5 1 Mariles 11					
Start 😸 🕒 🕼 (🔍 🥥 💌 🗍 📂 Minitab - U				PE_BB1_5.1_Monitor_11	≪ 3" ₩ 🛂 🕅 <u>V2</u> 7:18 PM				

Test to Determine Abnormal Situations (Special Causes)

Individuals Chart - Options	×
Parameters Estimate S Limits Tests Stages Box-Cox Display Stor	age
Perform selected tests for special causes	к
1 point > K standard deviations from center line	3.0
K points in a row on same side of center line	9
K points in a row, all increasing or all decreasing	6
K points in a row, alternating up and down	14
\Box K out of K+1 points > 2 standard deviations from center line (same side)	2
\Box K out of K+1 points > 1 standard deviation from center line (same side)	4
\square K points in a row within 1 standard deviation of center line (either side)	15
\Box K points in a row > 1 standard deviation from center line (either side)	8

Individual and Moving Range Chart Example

Small Shifts – EWMA Chart

EWMA Chart for Contract Cycle Time

Normal Data for Data Set 1

Time Series Plot for Data 1

X Bar & R for Data Set 1

Time Series for Data Set 2

X Bar & R for Data Set 2

Time Series Plot for Data 3

16.00 24.53 14.39 24.95 15.61 23.23 20.99 18.32 20.32 18.63 20.91 18.31 16.46 22.05 16.95 22.98 17.21 21.17 27.43 17.77 28.22 18.21 19.10 25.96 21.02 19.85 21.29 19.74 21.46 20.83

X Bar & R for Data Set 3

Multi-Vari Chart for Data Set 1

Multi-Vari Chart for Data Set 2

Multi-Vari Chart for Data Set 3

Questions

Two questions:

- 1) What have we learned from the data sets and graphs?
- 2) Will the product resulting from these three different data sets be different in terms of quality or the same?

Hypothesis Testing

Types of Hypothesis Tests

The first three tests look at differences in group averages.

The 4th looks for differences in variance.

The last 3
 look at
 differences in
 proportions.

Hypothesis Test	Purpose			
<i>t</i> -test	Compare two group averages			
Paired <i>t</i> -test	Compare two group averages when data is paired			
ANOVA (Analysis of Variance)	Compare two or more group averages			
Test of Homogeneity of Variance	Compare two or more group variances			
Chi-Square test	Compare two or more group proportions			
1-Proportion test	Compare one proportion to a Prescribed boundary			
2-Proportion test	Compare two group proportions			

Hypothesis Testing

d						
<u>C</u> alc	<u>S</u> tat <u>G</u> rap	h E <u>d</u> itor	<u>T</u> ools	<u>W</u> indow <u>H</u> elp		
8	<u>B</u> asic St	atistics	Þ	♥ _S Display Descriptive Statistics	Γ	
2	<u>R</u> egress	sion	•	Store Descriptive Statistics		
H WU	<u>A</u> NOVA		•	盘꽃 Graphical Summary		
	DOE		•		L	
	<u>C</u> ontrol Charts			1 1.Sample t		
	<u>Q</u> uality	Tools	•	Ot 2 Sample t	F	
_	Reliabili	ty/Survival	→	t Daired t	╞	
26/20	<u>M</u> ultivar	iate	•	[ef Faired C	⊢	Envir
	Time Series		•	1P 1 Proportion	F	Too He
.itab	Tables		+	2P 2 Proportions	F	Too Co
iect			•	¹ _{S P} 1-Samp <u>l</u> e Poisson Rate		Too No
			•	s ² 2-Sample Po <u>i</u> sson Rate	F	
iect	Power a	and Sample	Size 🕨	σ ² 1 Variance	F	
		6		م 2 Variances	E	
		7			E	
		8		COR Correlation	E	
		9		COV Covariance	E	
10			Mormality Test	F		
				F		
		12		X Goodness-of- <u>H</u> I Test for Poisson		
	1					

Another Simple Combination

Does fatigue affect mean rupture diameter?

Boxplots of Rupture by Type

(means are indicated by solid circles)

NO. No statistically significant difference in mean rupture diameter pre and post fatigue.....

The Three t's

- t-tests come in 3 main types
 - One sample t-test
 - Compares a sample to a known value
 - Value can be based on history
 - <u>Two sample t-test</u>
 - Compares two samples
 - Paired t-test
 - Usually compares two treatments to the sample samples
 - Example: two people measuring the same parts

Let's Talk About P-values

- There are many ways to state the conclusions reached based on a P-value. Which of these are easier to understand?
 - 1. A P-value is used to judge whether an observed difference between groups is significantly bigger than common-cause (random) variation (yes, if P < .05).
 - 2. If P < .05, reject the H_0 and conclude the H_a .
 - 3. P < .05 means that there is less than a 5% chance that the groups came from the same distribution.
 - 4. A P-value determines whether the observed difference is a statistically significant difference (yes, if P < .05).
 - 5. The P-value equals the probability of obtaining the observed difference given that the "true" difference is zero.
 - 6. If the P-value is low (< .05), the observed difference must be significant since the probability is low that such a difference in samples could be observed, if indeed there was no "true" difference.
 - 7. A P-value is used to judge whether there is enough statistical evidence to reject the null hypothesis (yes, if P < .05).

The one-sample t-test assumes the population is normally distributed. However, it is fairly robust to violations of this assumption, provided the observations are collected randomly and the data are continuous, unimodal, and reasonably symmetric.

Why use a one-sample t-test? A one-sample t-test can help answer questions such as: Is the process on target? Does a key characteristic of a supplier's material have the desired mean value? Is a new material or process taking us in the right direction? Let's discuss this last one. Are there times I want to reject the Null Hypothesis?

One-sample t-test example

Cerealbx.MTW ***							
Ŧ	C1	C2	C3	C4			
	BoxWeigh						
1	370.129						
2	367.710						
3	366.948						
4	364.528						
5	363.429						
6	367.483						
7							
8							
9							
10							
11							
12							
13							
14							
15							

We want to determine if the box weight is at our target of 365 grams.

We need to start with a check of the normality assumption.

What is the hypothesis here?

The Analysis

```
Welcome to Minitab, press F1 for help.
Retrieving project from file: 'D:\MANUFACTURING\BASIC STATISTICS
1.0\CEREALBX.MPJ'
```

Results for: Cerealbx.MTW

Probability Plot of BoxWeigh

Probability Plot of BoxWeigh

One-Sample T: BoxWeigh

Test of mu = 365 vs not = 365

Variable	N	Mean	StDev	SE Mean	95%	CI	Т	P
BoxWeigh	6	366.705	2.403	0.981	(364.183,	369.226)	1.74	0.143

The Paired t-test

The paired t-test uses matched data

Matched data can be for analysis of:

Two Operators Two Materials Two Suppliers Two Machines Two Pieces of Measuring Equipment

It is statistically more stringent than a two-sample t-test

Let's try to understand why.

An Exercise with the t test

	SCRAP.MTW ***													
	÷	C1	C2	C3	C4									
		Cell	New\$Scrap	Std\$Scrap										
Ш	1	1	101.97	114.71										
	2	2	126.17	134.40										
Ш	3	3	133.63	133.68										
Ш	4	4	173.98	185.04										
Ш	5	5	206.26	209.60										
	6	6	161.11	168.23										
	7	7	99.63	109.02										
	8	8	133.82	131.06										
	9	9	154.88	161.46										
	10	10	141.72	146.78										
	11													

Let's do treat this data as paired and also as unpaired to see if there is a difference.

®

And the session windows

2-sample t

```
Difference = mu (New$Scrap) - mu (Std$Scrap)
Estimate for difference: -6.1
95% CI for difference: (-36.3, 24.2)
T-Test of difference = 0 (vs not =): T-Value = -0.42 P-Value = 0.677 DF = 17
```

Paired t

```
Paired T for New$Scrap - Std$Scrap

N Mean StDev SE Mean

New$Scrap 10 143.3 32.4 10.2

Std$Scrap 10 149.4 31.7 10.0

Difference 10 -6.08 4.82 1.52

95% CI for mean difference: (-9.53, -2.63)

T-Test of mean difference = 0 (vs not = 0): T-Value = -3.99 P-Value = 0.003
```

What 2 Key indicators are there regarding the Null Hypothesis?

But Why?

Cell	New \$Scrap	Standard \$Scrap	Paired Differences
1	101.97	114.71	12.74
2	126.17	134.40	8.23
3	133.63	133.68	0.05
4	173.98	185.04	11.06
5	206.26	209.60	3.34
6	161.11	168.23	7.12
7	99.63	109.02	9.39
8	133.82	131.06	-2.76
9	154.88	161.46	6.58
10	141.72	146.78	5.06
average	143.32	149.40	6.08
st.dev.	32.41	31.70	4.82

Executing the test

≥M	initab	- CEREA	LBX.M	PJ											
Ei	e <u>E</u> di	t D <u>a</u> ta	Calc	Stat	Graph	Editor	Tools	Win	dow <u>H</u> elp						
🚘		a x	Ba	Ba	asic Sta	tistics	•	×_	Display Desc	riptive Statis	tics	1		•a Eh Li	(11) (11)
				Re	egressio	n	•	X S	Store Descrip	otive Statistic	s				
				A	NOVA		+	<u>عة</u>	Graphical Su	mmary					
	Sessio	n		D	OE		•								
	🕂 Pr	obabilit	y Plot	<u>C</u> o	ontrol C	harts	+	12	1-Sample 2				[
	r –			Quality Tools				11	1-Sample t	•					
We				Re	eļiability	/Survival	▶	21	2-Sample t						
Re				M	ultivaria	ite	•	म्न	Paired t						
11.		99		Ti	me <u>S</u> eri	es	•	1P	1 Proportion				an	366.7	
R		05		Та	ables		•	2P	2 Proportion	s		P	lev	2.403	
		90		N	onparar	netrics	•	s ¹ P	1-Sample Poi	isson Rate		þ		0.248	
				ED	DA A		+	s ² P	2-Sample Poi	isson Rate		E P	alue	0.599	
		20 -		Po	ower an	d Sample	Size 🕨	AT 2	1 Variance						
	L E	60 -						- - 1.	2 Variances						
	Γŭ	50 -							2 vondrices.					-	
	ء ا	30 -						COR	Correlation						
		20						COV	Covariance						
		10 -			>	<			Normality Te	st					
		5			<u> </u>			2 (2	~		. .				
			NATING 2					×	Goodness-of	-Eit Test for	Poisson	•			
		creation	1	<u> </u>	2	<u>C2</u>			C5	66	67		~0	<u> </u>	
	⊢	BoxV	Veigh		-	0	-		0.5		- C1				
	1	37	0.129												_
	2	36	7.710												
	3	36	6.948												
	4	36	4.528												
	5	36	3.429												
	6	36	7.483												
	7										1				
	8														
	9														
	10														
	11														
	12														
	13														
	14	_													
	15	_													
	16														
		4												-	
	1	5													
I I I I I I I I I I I I I I I I I I I		C													
目巖	Pr 1	6													
		6					_								
Perfo	Pr 1	6 -sample t	-tests a	nd com	pute co	nfidence	interval	s for t	he means						

1-Sample t (Test and (Confidence Interval)	3
	Samples in columns:	
	BoxWeigh	
	C Summarized data	
	Sample size:	
	Mean:	ł
	Standard deviation:	
	Perform hypothesis test	
	Hypothesized mean: 365	
Select	Graphs Options	-
Help	OK Cancel	

One-portion test

1 Proportion (Test and Confidence Interval)	
C Samples in columns:	We'll use summarized data for this one
Number of events: 18	
Number of trials: 500	
Perform hypothesis test Hypothesized proportion:	
Select Options	Minitab - Untitled
Help OK Cancel	<u>F</u> ile <u>E</u> dit D <u>a</u> ta <u>C</u> alc <u>S</u> tat <u>G</u> raph E <u>d</u> itor <u>T</u> ools <u>W</u> indow <u>H</u> elp
	🗃 🖬 🎒 X 🖻 💼 🗠 🗠 📴 🕇 🖡 🗛 🔏 🚫 🎖 💕 🛛 🐔
	E Session
	4/29/2009 9:35:25 AM
	Welcome to Minitab, press F1 for help.
	Test and CI for One Proportion
What statements can we now make about the process compared to a	Test of p = 0.02 vs p not = 0.02
target of 2%?	Exact Sample X N Sample p 95% CI P-Value
-	1 18 500 0.036000 (0.021473, 0.056300) 0.023
	1

American Society for Quality

Two-portion test

2 Proportions (Test a	nd Confidence I	(nterval)	×
	C Samples in or Samples:	ne column	
	Subscripts:	ifferent columns	
	First:		
	 Summarized 	data Eventor	Trisla
	First:	1	100
Select	Second:	18	500
Help		OK	Options
		OK	

We can compare two samples this way.

1 18 500 0.036000 (0.021473, 0.056300) 0.023

Test and CI for Two Proportions

Sample	Х	N	Sample p
1	1	100	0.010000
2	18	500	0.036000

What statements can we make about these two samples?

```
Difference = p (1) - p (2)
Estimate for difference: -0.026
95% CI for difference: (-0.0514349, -0.000565134)
Test for difference = 0 (vs not = 0): Z = -2.00 P-Value = 0.045
```

Fisher's exact test: P-Value = 0.225

* NOTE * The normal approximation may be inaccurate for small samples.

Process Capability

Capability Studies

- 1) The true purpose of a capability study is to determine exactly how well a process, product, component can meet a predetermined specification.
- 2) It can be measured in several different ways.
- The values generated can be absolute or relative. We may want to compare or we may want to use it to check against a hard and fast standard.

A Capability Study consists of:

Measuring Devices, Procedures, Definitions, People, Specifications and Processes.

7 Steps to a Good Process Capability Study

- 1. Obtain Process Data
- 2. Prepare Control Charts and Frequency Displays
- 3. Evaluate Process Stability
- 4. Estimate Short-Term and Long-Term Process Variation
- 5. Evaluate how well a Normal Distribution approximates the individual process observations
- 6. Prepare Summary Measures of Process Capability
- 7. Judge adequacy of Process Capability

Where is it in Minitab?

🔀 Minitab - Untitled																	_	. 8 ×
<u> </u>	<u>S</u> tat <u>G</u> rap	oh E <u>d</u> itor <u>T</u> ools	<u>W</u> indow <u>H</u> elp	,														
🖻 🖬 🎒 X 🖻	🖆 🖬 🍓 🐰 📭 Basic Statistics 🔸 🎮 番 🚫 💡 🗊 🕴 🕄 🕄 🕞 🔂 😫 🕄 🕄 🐨 😳 😒 🗐 🏗 🖾 🕮 📰 📧																	
	f _∞ = == = = I f = f = f = f = f = f = f =																	
												N - 14						
	DOE	1	•															
Project Manager	<u>C</u> ontro	l Charts	***			_											_	미지
Worksheet 1	<u>Q</u> uality	r Tools	Run Chart	t			C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	_ _
	Reliabil	ity/Survival	Pareto Ch	art														
	<u>M</u> ultiva	riate	Cause-an	d-Effect														-
	Time <u>S</u> e	eries	Individual	Distribution I	Identification													-
	Tables		📩 🔀 Johnson T	ransformatio	on													-
	<u>N</u> onpar	rametrics	Capability	<u>A</u> nalysis		-												
	EDA		Capability Sixpack				Normal.											
	Power	and Sample Size					B LJ Between	/Within										
		8				NN Nonnorm	a <u>l</u>											
		9	× Attrib <u>u</u> te	*X Attrib <u>u</u> te Agreement Analysis														
		10	Acceptance Sampling by Attributes Acceptance Sampling by Variables															
		11																
		12																
		13															L	
		14																
		15																<u> </u>
		16																-
		17																— I
		10																
		20																
		21																
		22																
		23																
		24																
		25																_
Plot data that follow a normal of	distribution																	
🏄 Start 🛛 进 🥘 🕑 😧	•	🛛 🗀 ev3Train	ning	📋 My D	Documents		Microso	ft PowerPoint	- [🕟	Minitab - U	ntitled				« 👌	en 🗞 🎤 😵	S:•	45 PM

Process Capability Example

American Society for Quality

How About Using Process Capability for Comparative Purposes?

Thank You For Your Time and Attention ! Uncle Larry

