

Backdating Scenarios in Type 2 Dimensions

By Anil Jacob, Senior Consultant at iOLAP, Inc.

Recently, I had an interesting conversation with my project’s data architect

regarding possible back-dated changes for a primary dimension -- Employee --

in the data warehouse. In our existing data model, Employee was maintained

as a Type 2 slowly changing dimension.

Six months into deployment, it was confirmed by business management that

employee changes could be back-dated. This conversation reminded me of a

project that I was part of three years earlier where such back-dated scenarios

happened frequently.

Many of us are familiar with design sessions where business leaders confirm the

chances of a certain scenario happening is rare. The architect then designs a

solution without considering this supposedly rare scenario at all. After one

month of deployment, it is noticed that this scenario occurs and breaks the

existing design. Back-dated changes are an example of such “rare scenarios.”

In addition to the challenge we faced in designing a solution that tackles back

dated changes, such scenarios bring in additional complexities such as possible

insertion of records within historical date ranges, surrogate keys of dimensions

getting out of sequence, the need to update historical fact data with new

surrogate keys, and altering of summarized data in fact tables/aggregate fact

tables.

After the code was deployed to the production environment the team realized

that this “rare scenario” happened more than anticipated. For the first few

occurrences of this scenario, manual updates were performed to clean the

data. Soon it was decided to re-design the architecture to handle back-dated

scenarios.

With rapid technological innovations in the area of business intelligence,

business management expects solutions to all their issues as a return for their

investment. Often overlooked are the complexities that scenarios like back-

dating presents. I am aware that Oracle BI handles such back-dated changes

as part of their solution, but not all systems do. As the BI field becomes more

mature, vendor systems will accommodate occurrences of such back-dated

scenarios as a normal situation in any data warehousing design. Everyone’s

goals is to have a data warehousing solution that is committed to keeping the

data as clean as possible.

In the remainder of this article, I will present a logical approach that you can use

to tackle back-dated scenarios.

A conventional type 2 slowly changing dimension is modeled with an educated

assumption that all changes coming from the source occur going forward. The

following diagram depicts the conventional design of a type 2 dimension. To

illustrate a scenario, I have given an example below.

Employee XYZ resides in California, and was hired on 1/1/2010.

Exhibit 1

Emp_No Emp_Name Location Hire Date End Date

1 XYZ California 1/1/2010

On 5/1/2013, we were notified from the source system that this employee has

moved to Texas. The source table src_Employee looks as follows:

Exhibit 2

Emp_No Emp_Name Location Hire Date End Date

1 XYZ Texas 1/1/2010

In a conventional type 2 slowly changing dimension -- Dim_Employee, the

following records are created.

Exhibit 3

Emp_ID Emp_No Emp_Name Location Eff_Start_Date Eff_End_Date

100 1 XYZ California 1/1/2010 4/30/2013

200 1 XYZ Texas 5/1/2013

On 7/1/2013, we are informed by the user that this employee had relocated to

Texas on 3/1/2013. In a scenario in which ‘location’ is the only column to trigger

historical employee records, the start and end dates in ‘DIM_Employee’ could

be updated for each record.

Exhibit 4

Emp_ID Emp_No Emp_Name Location Eff_Start_Date Eff_End_Date

100 1 XYZ California 1/1/2010 2/28/2013

200 1 XYZ Texas 3/1/2013

However, in a real life scenario, there will be multiple columns that trigger

historical records for a dimension. In the previous example, let us consider

Position to be another critical attribute for Employee.

Employee was hired on 1/1/2010 as a Software Engineer. He resides in California.

Exhibit 5

Emp_No Emp_Name Location Position Hire

Date

End

Date

1 XYZ California Software

Engineer

1/1/2010

On 4/1/2013, he gets promoted to the position of a Senior Software Engineer.

Exhibit 6

Emp_No Emp_Name Location Position Hire

Date

End

Date

1 XYZ California Senior Software

Engineer

1/1/2010

On 5/1/2013, we get a trigger from the source system that this employee has

relocated to Texas.

Exhibit 7

Emp_No Emp_Name Location Position Hire

Date

End

Date

1 XYZ Texas Senior Software

Engineer

1/1/2010

In the conventional type 2 slowly changing dimension, the following records are

created for the employee.

Exhibit 8

Emp_ID Emp_No Emp_Na

me

Location Position Eff_Start_Da

te

Eff_End_Da

te

100 1 XYZ California Software

Engineer

1/1/2010 3/31/2013

200 1 XYZ California Senior

Software

Engineer

4/1/2013 4/30/2013

300 1 XYZ Texas Senior

Software

Engineer

5/1/2013

On 7/1/2013, we are informed by the user that this employee had relocated to

Texas on 3/1/2013. In this scenario, we cannot go ahead and update the

effective dates of each record.

Assumption: There is a source table ‘src_Employee_location’ that maintains start

and end date of each employee and his corresponding location.

Emp_No Location Start Date End Date Update Date

1 Texas 3/1/2013 7/1/2013

1 California 1/1/2010 2/28/2013 7/1/2013

 Design a typical Type 2 dimension for Employee. The image of Dim_Employee

after this step will be as seen in exhibit 3.

 Identify all records that have changed src_Employee_location (based on

Update_Date).

 Join the changes in src_Employee_location to DIM_Employee based on the

following condition

Emp_No=Emp_No and Start Date between eff_start_date and eff_end_date

or eff _st_date between Start Date and End Date

After this join operation, the output looks as follows:

Dim_Employee src_Employee

Em

p_I

D

Em

p_N

o

Emp_

Nam

e

Loca

tion

Position Eff_Star

t_Date

Eff_En

d_Dat

e

Em

p_N

o

Loca

tion

Start

Dat

e

End

Date

Upd

ate

Date

100 1 XYZ Calif

orni

a

Software

Engineer

1/1/20

10

3/31/2

013

1 Texa

s

3/1/

201

3

 7/1/2

013

100 1 XYZ Calif

orni

a

Software

Engineer

1/1/20

10

3/31/2

013

1 Calif

orni

a

1/1/

201

0

2/28

/201

3

7/1/2

013

200 1 XYZ Calif

orni

a

Senior

Software

Engineer

4/1/20

13

4/30/2

013

1 Texa

s

3/1/

201

3

 7/1/2

013

300 1 XYZ Texa

s

Senior

Software

Engineer

5/1/20

13

 1 Texa

s

3/1/

201

3

 7/1/2

013

Scenario 1

Start date (source) < eff_st_date (target) and end date(source) > eff_end_date

(target)

Description- The date range of the target record is within the date range of

source record.

Resolution- Update existing record with source location.

 Scenario 2

Start date (source) between eff_st_date (target) and eff_end_date (target) and

End Date(source) between eff_st_date(target) and eff_end_date(target)

Description- The date range of the source record within the date range of target

record.

Resolution- Insert new record that retrieves location from source record and

remaining data from target record, record start date= start date (source),

record end date = end date (source)

Scenario 3

End Date (source) >= eff_end_date(target) and Start Date (source) >

eff_start_date (target)

 Description- Overlap of source and target records in which source start date in

between target start and end dates

Resolution- Insert new record that retrieves location from source record and

remaining data from target record, record start date= start date(source), record

end date = eff_end_date (target)

Scenario 4

End Date (source) < eff_end_date(target) and Start Date (source) <=

eff_start_date (target)

 Description- Overlap of source and target records in which source end date in

between target start and end dates

Resolution- Update existing record that retrieves all data from target record,

record start date remains same, record end date = end date (source)

The data in Dim_Employee after the above pseudo code has been applied

looks as follows:

Dim_Employee

Emp_

ID

Emp_

No

Emp_Na

me

Locatio

n

Position Eff_Start_D

ate

Eff_End_D

ate

Scenar

io

Type

100 1 XYZ Califor

nia

Software

Engineer

1/1/2010 2/28/2013 4 Upda

te

400 1 XYZ Texas Software

Engineer

3/1/2013 3/31/2013 3 Insert

200 1 XYZ Texas Senior

Software

Engineer

4/1/2013 4/30/2013 1 Upda

te

300 1 XYZ Texas Senior

Software

Engineer

5/1/2013 1 Upda

te

About the Author

Anil specializes in designing Business Intelligence solutions and has experience working

on various technologies including Informatica, MicroStrategy and DataStage. He has

worked with large enterprise clients such as AT&T, Walmart and Gilbane. Anil received

his MS in Management Information Systems from the Texas A&M University, Mays

Business School.

About iOLAP

iOLAP, Inc. (www.iolap.com) is a Dallas-based strategic data consultancy specializing

in Data Warehousing and Business Intelligence strategy and solutions. iOLAP is

completely focused on the Data Warehousing (DW) and Business Intelligence (BI)

markets and brings a client-centric and business-focused perspective to all of its

engagements. iOLAP has been in business since 1999 with in-depth expertise across all

Data Warehousing and Business Intelligence technology areas, including the newest

leading-edge Business Analytics and Big Data architectures. iOLAP serves some of the

world’s largest companies across all major industries. All sales and support comes from

our centralized offices in Texas and California.

For More Information

For more information about iOLAP services, call (214) 618-5000 or email us at info@iolap.com.

Please visit us at http://www.iolap.com.

Business Intelligence + Big Data

http://www.iolap.com/
mailto:info@iolap.com

