

PATENTS (INTELLECTUAL PROPERTY)

Distribution Statement A: Approved for public release, distribution is unlimited. Presented to:

Industry Day 2014

Presented by:

Charlene Haley, B.Sc., M.Sc., LL.B., J.D.

LEAD PATENT ATTORNEY

GOVERNMENT AGENCIES										
RANK	COMPANY/ORGANIZATION, COUNTRY (PARENT ORGANIZATION)	2010 U.S. PATENTS	PIPELINE GROWTH INDEX	PIPELINE IMPACT	SELF- CITATIONS	ADJUSTED PIPELINE IMPACT	PIPELINE GENERALITY	PIPELINE ORIGINALITY	PIPELINE POWER	ADJUSTED PIPELINE POWER
1	U.S. Navy, U.S.	304	1.30	0.69	15%	0.69	0.88	0.99	238	238
2	U.S. Department of Health and Human Services, $\ensuremath{\textit{U.S.}}$	151	1.25	0.49	15%	0.49	1.17	1.02	109	109
3	Commissariat à l'Énergie Atomique , France	224	1.52	0.43	17%	0.43	0.62	1.02	92	92
4	Japan Science and Technology Agency, Japan	172	1.61	0.36	13%	0.36	0.89	1.01	89	89
5	Centre National de la Recherche Scientifique, France	154	1.39	0.37	13%	0.37	1.08	1.03	87	87
6	Agency for Science, Technology and Research, Singapore	46	1.39	1.05	4%	1.05	1.20	1.01	82	82
7	National Aeronautics and Space Administration, U.S.	105	1.19	0.66	16%	0.66	0.97	0.99	80	80
8	U.S. Army, U.S.	151	1.24	0.46	12%	0.46	0.84	1.00	71	71
9	U.S. Postal Service, U.S.	40	3.00	0.79	60%	0.55	0.64	1.02	43	62
10	Ministry of Economy, Trade and Industry, Japan	105	1.31	0.44	15%	0.44	0.80	1.01	49	49
11	U.S. Department of Energy, U.S.	37	1.48	0.57	6%	0.57	1.00	1.02	32	32
12	National Research Council of Canada, Canada	40	2.11	0.41	5%	0.41	0.88	1.02	31	31
13	U.S. Department of Commerce, U.S.	9	2.25	0.75	0%	0.75	1.38	1.02	21	21
14	National Security Agency/Central Security Service, U.S.	24	1.85	0.67	19%	0.67	0.63	0.96	18	18
15	U.S. Department of Agriculture, U.S.	43	1.59	0.26	11%	0.26	0.81	1.04	15	15
16	U.S. Air Force, U.S.	45	0.94	0.52	8%	0.52	0.64	1.00	14	14
17	Council of Scientific and Industrial Research, India	73	1.38	0.25	26%	0.25	0.25	1.03	6	6
18	Israel Ministry of Defense, Israel	11	0.92	0.46	0%	0.46	0.97	1.10	5	5
19	U.S. Environmental Protection Agency, U.S.	11	1.10	0.49	18%	0.49	0.72	1.06	5	5

© 2011 IEEE Spectrum

NAVMAIR

GOVE	RNMENT AGENCIES	
RANK	COMPANY/ORGANIZATION, COUNTRY (PARENT ORGANIZATION)	2010 U.S. G
1	U.S. Navy, U.S.	304
2	U.S. Department of Health and Human Services, U.S.	151
3	Commissariat à l'Énergie Atomique , France	224
4	Japan Science and Technology Agency, Japan	172

© 2011 IEEE Spectrum

GOVERNMENT AGENCIES PIPELINE ADJUSTED 2011 U.S. GROWTH PIPELINE SELF-PIPELINE COMPANY/ORGANIZATION. PIPELINE PIPELINE PIPELINE COUNTRY (PARENT ORGANIZATION) RANK **PATENTS** INDEX IMPACT CITATIONS IMPACT GENERALITY ORIGINALITY POWER 0.7 21% 1.1 228.3 U.S. Navy, U.S. 320 1.0 0.7 0.9 U.S. Department of Health and Human Services, U.S. 161 1.1 0.8 28% 0.8 0.9 1.0 130.3 2 3 National Aeronautics and Space Administration, U.S. 110 1.0 0.8 9% 0.8 1.2 1.0 115.5 Commissariat à l'Énergie Atomique, France 102.3 247 1.1 0.7 18% 0.7 0.6 1.0 4 5 Agency for Science, Technology and Research, Singapore 59 1.3 1.0 1% 1.0 1.1 1.0 83.2 6 U.S. Army, U.S. 131 0.9 0.7 10% 0.7 0.9 1.0 76.1 7 U.S. Environmental Protection Agency, U.S. 17 1.5 1.1 12% 1.1 2.2 1.1 75.7 Ministry of Economy, Trade and Industry, Japan 0.7 0.7 0.8 1.1 70.9 8 116 1.1 18% 9 Centre National de la Recherche Scientifique, France 153 1.0 0.5 12% 0.5 0.6 1.1 55.6 10 Japan Science and Technology Agency, Japan 112 0.7 0.6 9% 0.6 0.5 1.1 23.2 11 U.S. Air Force, U.S. 45 1.0 0.6 6% 0.6 0.7 1.0 18.4 U.S. Department of Energy, U.S. 1.1 17.9 12 27 0.7 0.8 8% 0.8 1.1 13 U.S. Department of Agriculture, U.S. 61 1.4 0.5 10% 0.5 0.3 1.2 14.9 14 National Research Council of Canada, Canada 26 0.7 0.5 2% 0.5 1.0 1.0 8.6 15 Institute of Nuclear Energy Research (Taiwan), Taiwan 41 2.2 0.3 50% 0.3 0.3 1.0 5.8 0.6 1.1 4.1 16 State of Israel Ministry of Defense, Israel 11 0.9 10% 0.6 0.6 17 U.S. Postal Service, U.S. 26 0.6 0.4 9% 0.4 0.4 1.2 2.8 U.S. Department of Commerce, U.S. 16 0.3 0.3 0.3 1.2 1.7 18 1.5 33% 19 National Security Agency/Central Security Service, U.S. 10 0.4 0.7 2% 0.7 0.8 0.6 1.3

© 2011 IEEE Spectrum

1.2

1.1

0.5

0.3

14%

0.3

0.3

36

20

Council of Scientific and Industrial Research, India

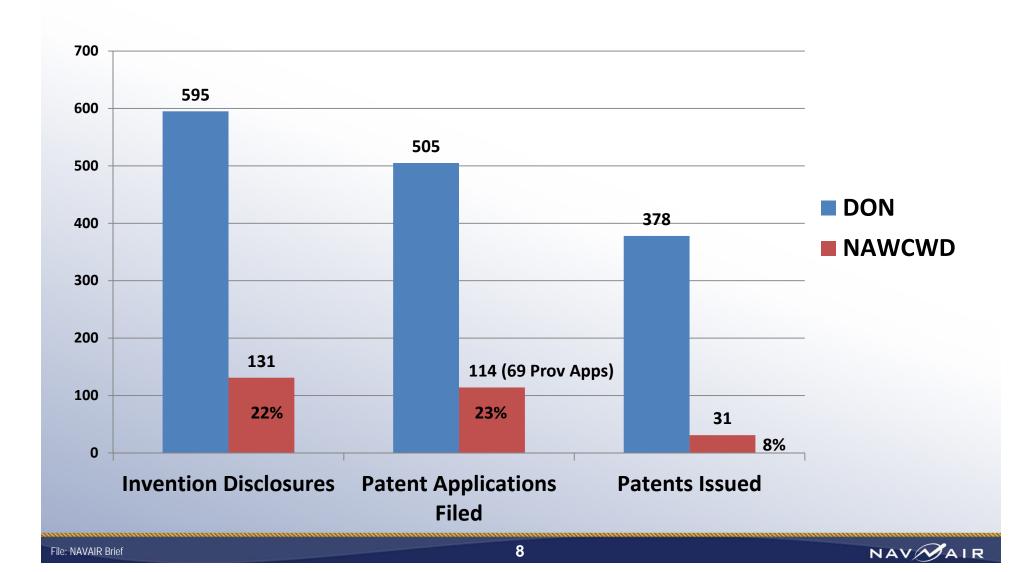
Interactive: Patent Power 2013 - IEEE Spectrum

Rank₹	Company / Organization	Country of Headquarters	2012 U.S. Patents	Pipeline Growth Index	Pipeline Impact	Self- Citations (%)	Adjusted Pipeline Impact	Pipeline Generality	Pipeline Originality
1	U.S. Navy	United States	358	1.12	0.68	0.22	0.68	0.84	1.09
2	Agency for Science, Technology and Research	Singapore	79	1,34	1.06	0.01	1.06	1.73	1.06
3	U.S. Army	United States	175	1.3	0.77	0.14	0.77	1.01	1.01
4	Commissariat à l'Énergie Atomique et aux Énergies Alternatives	France	292	1.16	0.62	0.23	0.62	0.66	1.04
5	Centre National de la Recherche Scientifique	France	197	1.23	0.62	0.16	0.62	0.74	1.1
6	U.S. Department of Health and Human Services	United States	144	0.82	1.29	0.29	1.29	0.78	0.99
7	National Aeronautics and Space Administration	United States	115	1.01	0.81	0.08	0.81	0.99	0.97
8	Israel Ministry of Defense	Israel	16	1.45	0.92	0.05	0.92	1.8	1.1
9	Rafael Advanced Defense Systems Ltd.	[srael	16	1.45	0.92	0.05	0 92	1.8	1.1
10	U.S. Department of Energy	United States	37	1.37	1.03	0.02	1.03	0.8	0.84

© 2011 IEEE Spectrum

The Patent Board Scorecard Ranks ETRI #1 in Initial Innovation Anchor Scorecard™ Top 10 Institutions in Innovation Anchor Scorecard™ | Annual snapshot

Previous Rank	Current Rank	Company	Patent Count*	Science Strength™	Innovation Cycle Time™	Industry Impact™	Technology Strength™	Research Intensity™
2	1	Electronics & Telecommunications Research Inst.	537	34	7.50	1.01	364.09	0.02
1	2	University of California	370	19277	11.10	1.37	341.88	1.41
3	3	Industrial Technology Research Institute	465	7	8.80	0.83	258.08	0.02
4	4	MIT/Mass Inst of Technology	173	5529	11.30	1.93	225.59	1.35
5	5	US Navy	321	316	12.60	0.91	194.21	0.28
7	6	Stanford University	176	2905	10.70	1.60	190.26	0.95
20	7	General Hospital Corp, The	90	31004	11.70	2.85	172.53	1.81
6	8	US DOE	266	1526	11.70	0.91	163.06	0.90
8	9	California Inst of Technology	116	4621	12.00	1.84	143.26	1.12
13	10	Fraunhofer Gesellschaft	147	71	11.90	1.35	133.18	0.05

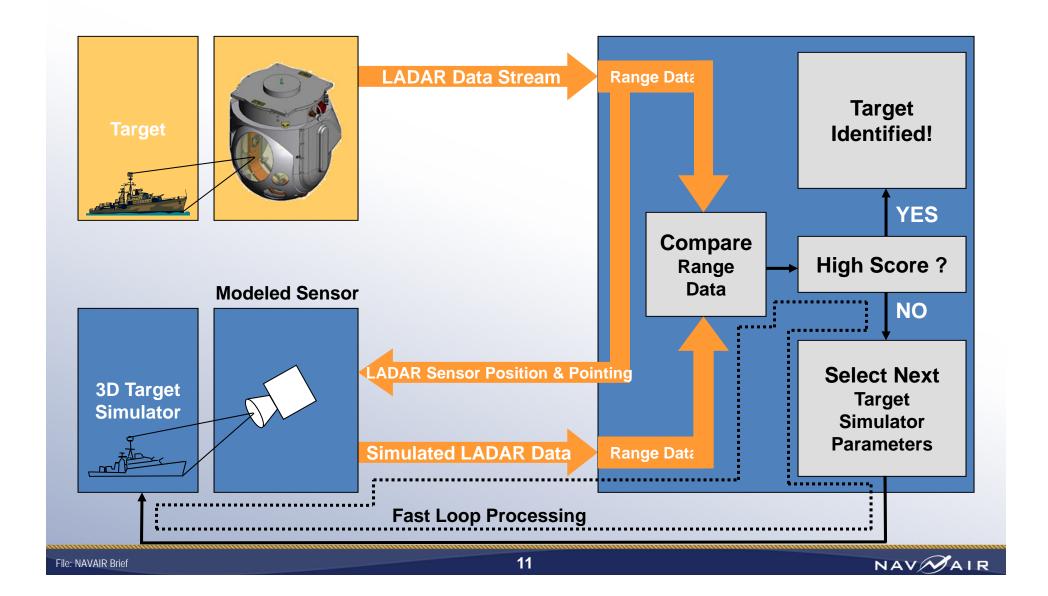


STATUS OF PATENT PROGRAM FY2012

- Increase in submission of Invention Disclosuresup 211%
- Increase in patent application filingup 253%

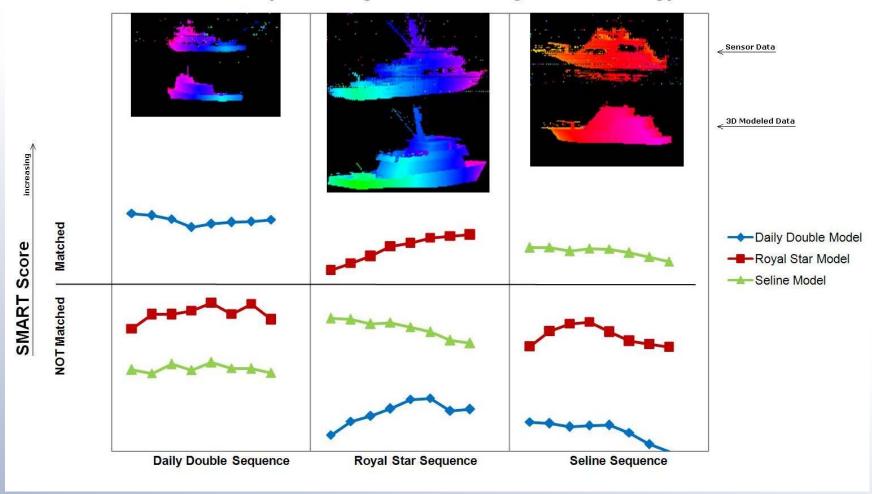
FY2012 PATENT STATS NAWCWD OGC COMPARED TO DON

PATENTED TECHNOLOGIES

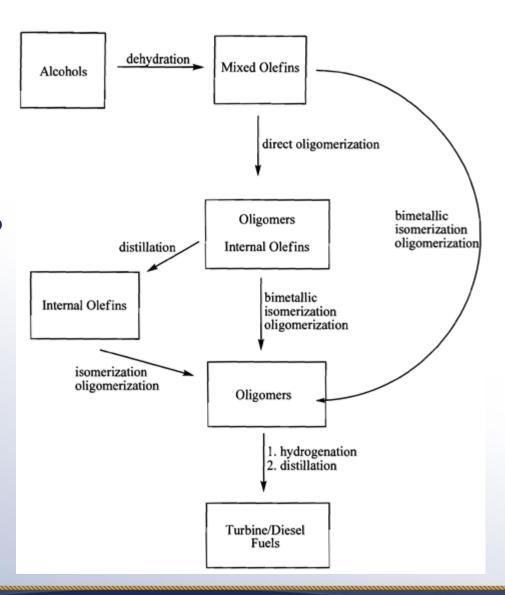

Top 10 Patents with Commercial Potential!

- 1. LADAR Stream Formatting and Processing Method
- 2. Three Dimensional Shape Correlator
- 3. Alcohol to Jet Fuels/Renewable High-Density Tactical Fuels
- 4. Poly(3,4-alkylene dioxythiophene)-Based Capacitors Using Ionic Liquids as Supporting Electrolytes
- 5. POSS Polymer
- 6. Face Recognition Process
- 7. Fumeless Latent Fingerprint Detection
- 8. Nanoplasmonic Cavities for Photovoltaic Applications
- 9. Field Colorimetric Test Device
- 10. Electro-Optic Signal Modulators

LADAR Stream Formatting & Processing Method


SMART – Shape Matching Automatic Recognition Technology

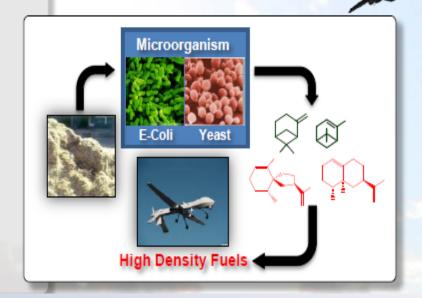
Three Dimensional Shape Correlator


SMART - Shape Matching Automatic Recognition Technology

Alcohol to Jet Fuels

- Biofuels patent portfolio consists of over 40 patent applications and continues to grow
- The first patent (U.S. Patent 8,227,651) was granted on July 24th, 2012 in NAWCWD's biofuels portfolio
- Patent Licensing Agreement with Cobalt Technologies, Inc. for 13 inventions
 - 4 patents have already issued
- Non-food biostock to fuels

Renewable High-Density Tactical Fuels

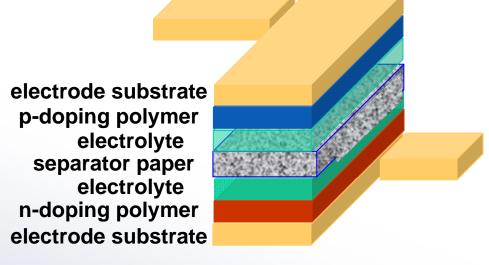

Inventor: Dr. Benjamin G. Harvey

(Michael E. Wright, Heather A. Meylemans, and Roxanne L. Quintana on several of the patents)

We have developed a variety of renewable high density fuels that have applications for jet, diesel, missile, and UAV propulsion. These fuels can be produced in a sustainable fashion from waste biomass and have been designed to outperform both conventional renewable fuels as well as petroleum derived fuels.

Commercial / Alternative applications

- ✓ Jet/Diesel Fuel
- ✓ We have a variant that can be used as high octane gasoline—automobiles, av gas, etc.
- ✓ Motor oil
- ✓ Lubricants
- ✓ Resins
- ✓ Paint
- √ Coatings/Finishes
- √ Scents/Flavorings
- √ Cosmetics


Poly(3,4-alkylene dioxythiophene)-Based Capacitors Using Ionic Liquids as Supporting Electrolytes

- High power energy storage
 - Higher power density than batteries (kW/kg)
 - Lower operating voltage than batteries (1-3V)
 - Shorter operating times than batteries (sec-min)
 - Higher energy density than traditional capacitors (~3Wh/kg)
- Applications
 - Military (short intense bursts of power)
 - Computer backup (less power, longer time)
 - Electric vehicle burst power (intermediate power and length)

Poly(3,4-alkylene dioxythiophene)-Based Capacitors Using Ionic Liquids as Supporting Electrolytes

These cells are smaller than a credit card

Power Density

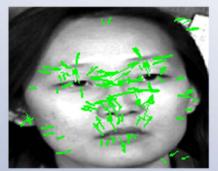
- Currently 625 Watts/kg
- Cathode improvements could double this

Charge Time

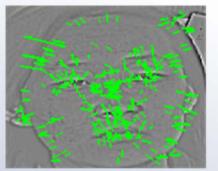
Under a minute; more studies needed.

Stability/Hold Life

 In inert atmosphere, devices are quite stable; good hermetically sealed packaging will be crucial.


Face Recognition Process

Feature Descriptor (SIFT) detects and extracts local feature descriptors that are reasonable invariant to:


 Changes in scale, 2D translation and rotation illumination, image noise and viewpoint.

SIFT keypoint detector is not invariant to illumination changes.

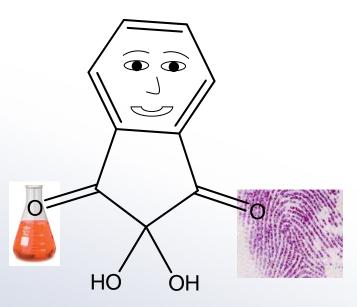
Highpass filtering + adaptive thresholding ensures adequate number of descriptors per image.

Keypoint selection with original SIFT method, 120 points

30 pose chance

80° pose ch

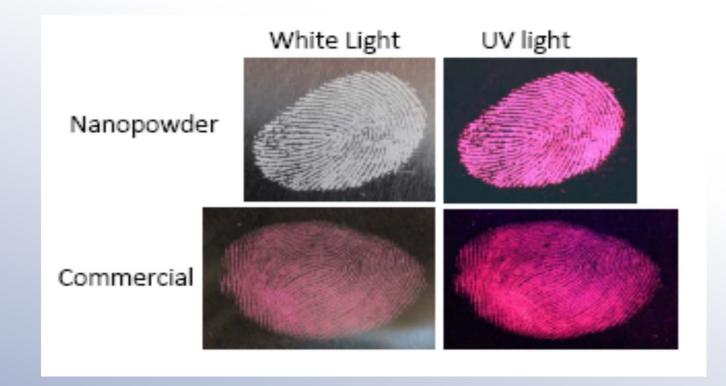
Face Recognition Process


Fumeless Latent Fingerprint Detection

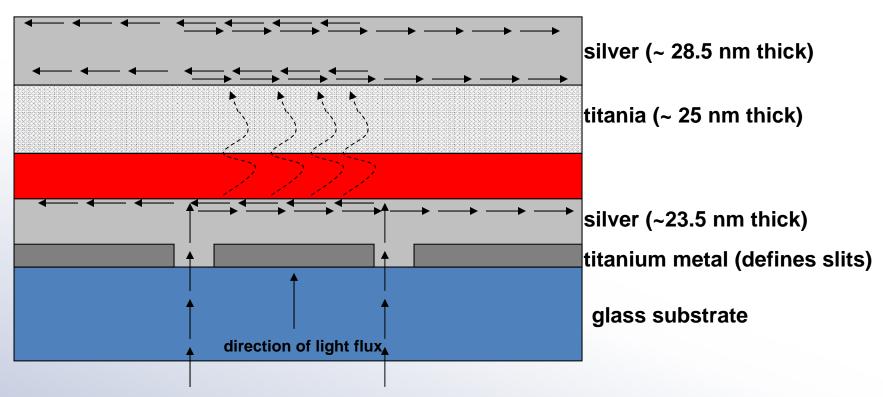
Current Methods of Latent Fingerprint Development

Fuming Super Glue

Ninhydrin

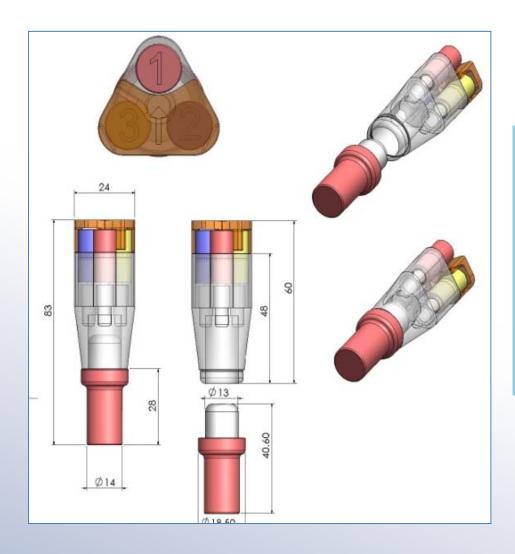


Fumeless Latent Fingerprint Detection


Commercial / Alternative applications

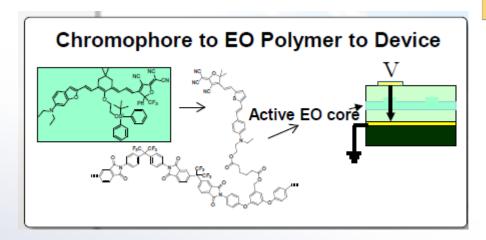
Detection of latent finger, nose, and paw prints for crime scene evidence collection and military applications.

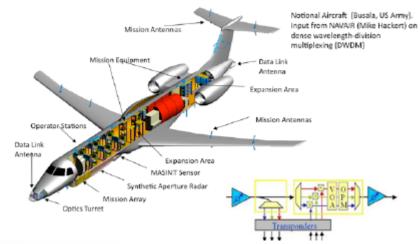
Nanoplasmonic Cavities for Photovoltaic Applications

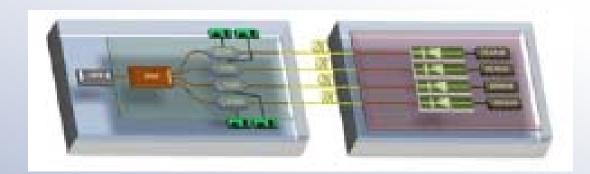

Advantages to this design

- 1) plasmonic enhancement of light absorbance
- 2) slits set up plasmonic interference pattern
- 3) polythiophene chains lie in plane and absorb light more efficiently travelling parallel, (McGehee, et al. Advanced Functional Materials, Volume 15, Issue 12, Pages 1927 -1932: 31 Oct 2005). This design causes a fraction of the incident light to travel parallel to the chains.

Field Colorimetric Test Device


Small, refillable, disposable, adaptable kit (like a first-aide kit) with tests that presumptively detect explosives and drugs


Conceptual Form:
Simple
Intuitive
Small
Obvious results
No sampling gloves
Contained reagents
Analyze now or
later
Foolproof operation



Electro-Optic Signal Modulators

Replace heavy copper coax cable with Fiber Optic Links

NEW MATERIALS FOR ELECTRO-OPTIC SIGNAL MODULATION
- Optical Switching at Sub-Nanosecond Speed
- Bandwidth Greater Than 100 GHz

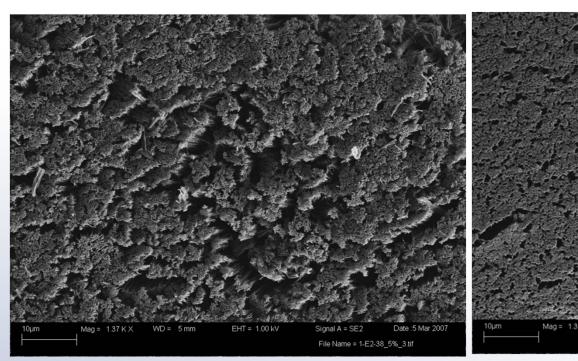
Polyhedral Oligomeric SilSesquioxane (POSS) POLYMER

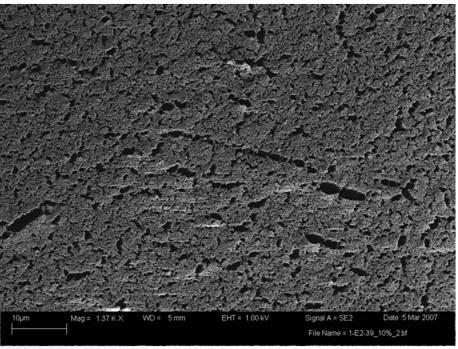
Commercial / Alternative applications

- ✓ Light weight composite structures for LEO
- √ Coatings to protect Photovoltaics/Electronics
- √ Flexible and Tough Kapton equivalent films
- √ Modifying/Decreasing flammability of polymers
- ✓ Adjusting hydrophobicity of the polymer surfaces
- ✓ Preparing Nano-structured polymer toughners
- ✓ Burn modifiers for Polymeric Materials
- √ Hybrid Polymeric Materials

polyamic acid solution

High Molecular SSQ-Polyimide


$$x + y = 1.00$$



Atomic Oxygen erodes away polymer in days without POSS protection

Polyhedral Oligomeric SilSesquioxane (POSS) POLYMER

Scanning electron microscope images of two MC POSS polyimides that were exposed to the LEO environment for 3.9 years on MISSE-1. The magnification in both images is 1,370.