

## Current Status of the UCB PB-FHR Mark-1 Commercial Prototype Design Effort

USNIC-Argonne Symposium on Advanced Reactor Economics
January 28, 2014

Michael Laufer
Department of Nuclear Engineering, U.C. Berkeley





**U.S. Department of Energy** 

## Fluoride Salt-Cooled High-Temperature Reactors (FHRs) Combine Two Nuclear Technologies

#### **Coated Particle Fuel**



Fission Product Retention > 1600° C

FHRs have <u>uniquely</u> large fuel thermal margins (fuel temp < 1000° C)

**BUT** need to confirm performance at higher FHR power densities

#### Fluoride Salt Coolants



Excellent heat transfer properties
Transparent, clean fluoride salt
Boiling point ~ 1400° C
Reacts very slowly in air
No energy source to pressurize
containment

BUT high freezing temperature (459°C) AND industrial safety for Be control

## FHR Design Space Allows for Coupling to Air Cycles

| Coolant     | System Pressure                 |                                                                   |  |  |  |
|-------------|---------------------------------|-------------------------------------------------------------------|--|--|--|
| Temperature | Low                             | High                                                              |  |  |  |
| Low         |                                 | Light-Water<br>Reactor                                            |  |  |  |
| Medium      | Sodium Fast<br>Reactor          |                                                                   |  |  |  |
| High        | FHR<br>(High Inlet Temperature) | High-Temperature<br>Gas-Cooler Reactor<br>(Low Inlet Temperature) |  |  |  |



### **Current FHR Development Efforts**

- DOE Integrated Research Project (IRP)
  - Collaborative university effort with MIT, UCB, and UW
  - Includes commercialization strategy, commercial prototype and test reactor pre-conceptual design effort, and assorted technology development efforts
- Oak Ridge National Laboratory
  - Ongoing FHR development work on technology roadmap and reactor design (plate fuel)
- ANS Standards Committee 20.1
  - Currently developing FHR-specific GDCs and design standards
- Shanghai Institute of Applied Physics (SINAP)
  - Currently developing FHR and MSR technology
  - 10 MW FHR test reactor deployment planned for 2017

## Goals for the Compelling FHR Market Case

#### ENVIRONMENT

 Enable a low-carbon nuclear-renewable (wind/solar) electricity grid by providing economic dispatchable electricity

#### ECONOMIC

 Increase revenue relative to base load nuclear power plants with natural gas co-firing

#### SAFETY

 No major offsite radionuclide releases even in bounding severe accident cases

### PB-FHR Mk1 Design Goals

- Demonstrate a plausible, self-consistent Nuclear Air Combined Cycle (NACC) system design
  - 2 archival articles now accepted to ASME Journal of Engineering for Gas Turbines and Power
- Provide detailed design for decay heat management systems
  - Provide basis for establishing integral effects testing and TH code validation and benchmark exercises
- Develop a credible, detailed annular FHR pebble core design
  - Provide basis for future FHR code benchmarking
- Identify additional systems and develop notional reactor building arrangement
  - "Black-box" level of design for many of these systems
  - Include beryllium and tritium management strategies
- Final Design Report Expected: June 2014
  - Pre-Conceptual Level

### Nominal PB-FHR Mk1 Design Parameters

- Annular pebble bed core with center reflector
  - Core inlet/outlet temperatures 600/700° C
  - Control elements in channels in center reflector
  - Shutdown elements cruciform blades insert into pebble bed
- Reactor vessel 3.5-m OD, 12.0-m high
  - Vessel power density 3 x higher than S-PRISM & PBMR
- Power level: 236 MWth, 100 MWe (base load), 242 MWe (peak w/ gas co-fire)
  - Base load efficiency: 42.4%
  - Natural gas conversion efficiency: 66.4%
- GE 7FB gas turbine w/ 3-pressure HRSG
- Air heaters: Two 3.5-m OD, 10.0-m high CTAHs, direct heating
- Tritium control and recovery
  - Recovery: Absorption in fuel and blanket pebbles
  - Control: Kanthal coating on air side of CTAHs



#### PB-FHR Mk1 Flow Schematic



## PB-FHR Mk1 NACC Physical Arrangement



# GE 7FB Turbine Modified for External Nuclear Heating



### **Unique Features of NACC**

- Capability to provide peak power with auxiliary fuel
  - Increase revenue after paying for fuel
  - Natural gas today, hydrogen and bio-fuels in future
- Fast response because turbine is always hot and spinning peak power starts from base-load NACC
- Efficient natural gas to electricity conversion
  - 66.4% heat to electricity efficiency vs. NGCC ~ 60%
- 40% cooling water required of LWR per kW(e)h
- Efficient process heat option
  - No isolation steam generator with capital cost and temperature drop penalty. No tritium concern.
  - High temperature steam



## Maximize Revenue By Selling Electricity When the Price is High

### **Electricity Price Vs Hours Sold at that Price**





## Renewable Deployment Changes the Grid





California Daily Spring Electricity Demand and Production with Different Levels of Photovoltaic Electricity Generation





## Transition to a Low-Carbon Electricity Market Imply More Hours of Low / High Price Electricity



Distribution of electricity prices, by duration, at Houston, Texas hub of ERCOT, 2012

Source: C. Forsberg, "Commercialization Strategy and Challenges for Fluoride-Salt-Cooled High-Temperature Reactors (FHRs). 19 January 2014



#### PB-FHR Mk1 Reactor Vessel Cross Section



## The Mark-1 center reflector block geometry minimizes stresses induced by neutron irradiation



## Pebble Injection and Core Flow in PB-FHR Mk1

#### Narrow Slot Heap Structure







## Scaled Pebble Flow (Dry System)



## PB-FHR Mk1 Refractory Reactor Cavity Liner System



### V.C. Summer Unit 2 Reactor Cavity Module CA04





- The Mk1 PB-FHR reactor building will use the same modular, steelplate/concrete composite structures as AP-1000
- The Mk1 reactor cavity system will use the a similar stainless steel liner design

http://www.flickr.com/photos/scegnews/sets/72157629244341909/

## Comparison to Other Reactor Designs

|                                             |        |       | Westing-   |             |               |
|---------------------------------------------|--------|-------|------------|-------------|---------------|
|                                             |        | ORNL  | house      |             |               |
|                                             | Mk1    | 2012  | 4-loop     |             | S-            |
|                                             | PB-FHR | AHTR  | <b>PWR</b> | <b>PBMR</b> | PRISM         |
| Reactor thermal power (MWt)                 | 236    | 3400  | 3411       | 400         | 1000          |
| Reactor electrical power (MWe)              | 100    | 1530  | 1092       | 175         | 380           |
| Fuel enrichment †                           | 19.90% | 9.00% | 4.50%      | 9.60%       | <b>8</b> .93% |
| Fuel discharge burn up (MWt-d/kg)           | 180    | 71    | 48         | 92          | 106           |
| Fuel full-power residence time in core (yr) | 1.38   | 1.00  | 3.15       | 2.50        | 7.59          |
| Power conversion efficiency                 | 42.4%  | 45.0% | 32.0%      | 43.8%       | 38.0%         |
| Core power density (MWt/m3)                 | 22.7   | 12.9  | 105.2      | 4.8         | 321.1         |
| Fuel average surface heat flux (MWt/m2)     | 0.189  | 0.285 | 0.637      | 0.080       | 1.13          |
| Reactor vessel diameter (m)                 | 3.5    | 10.5  | 6.0        | 6.2         | 9.0           |
| Reactor vessel height (m)                   | 12.0   | 19.1  | 13.6       | 24.0        | 20.0          |
| Reactor vessel specific power (MWe/m3)      | 0.866  | 0.925 | 2.839      | 0.242       | 0.299         |
| Start-up fissile inventory (kg-U235/MWe) †† | 0.79   | 0.62  | 2.02       | 1.30        | 6.15          |
| EOC Cs-137 inventory in core (g/MWe) *      | 30.8   | 26.1  | 104.8      | 53.8        | 269.5         |
| EOC Cs-137 inventory in core (Ci/MWe) *     | 2672   | 2260  | 9083       | 4667        | 23359         |
| Spent fuel dry storage density (MWe-d/m3)   | 4855   | 2120  | 15413      | 1922        | -             |
| Natural uranium (MWe-d/kg-NU) **            | 1.56   | 1.47  | 1.46       | 1.73        | -             |
| Separative work (MWe-d/kg-SWU) **           | 1.98   | 2.08  | 2.43       | 2.42        | -             |

<sup>†</sup> For S-PRISM, effective enrichment is the Beginning of Cycle weight fraction of fissile Pu in fuel

<sup>\*\*</sup> Assumes a uranium tails assay of 0.003.



<sup>††</sup> Assume start-up U-235 enrichment is 60% of equilibrium enrichment; for S-PRISM startup uses fissile Pu

<sup>\*</sup> End of Cycle (EOC) life value (fixed fuel) or equilibrium value (pebble fuel)

# FHRs Provide Robust Inherent Defense-In-Depth to Retain Radionuclides During Accidents

- Inherent characteristics of the fuel and coolant retain radionuclides:
  - TRISO Fuel
    - » Demonstrated FP retention > 1600° C in NGNP Program
    - » FHRs operate with 100s° C of fuel temperature margins
    - » No incremental fuel failure expected during accidents
      - Need to confirm performance at higher power densities
  - Flibe Coolant
    - » Demonstrated retention of solid FPs and iodine in MSRE
      - MSRE ~ FHR Test with 100% Fuel Failure
    - » Low pressure coolant reduces stored energy in containment
- Low-pressure low-leakage containment reduces the release of noble gas fission products or their daughter radionuclides
  - Noble gas fission products will be removed under normal operation in the processing of the inert cover gas

#### FHR Radionuclide Barriers



#### Intrinsic characteristics can provide two key benefits:

- 1. Reduce licensing uncertainty with conservative analysis
- 2. Reduce development costs by using best estimate analysis



**UCB Nuclear Engineering** 

## Preliminary Results for PB-FHR Cs-137 Release Bounding Case with 1% Defective Fuel



- Total release after 100 days is less than 4 Ci
- 99.998% retention in the fuel and flibe

## Preliminary Thyroid Dose Analysis Bounding Case with 1% Defective Fuel



- PB-FHR Mk1 should meet 10% of the 10 CFR 50.34 dose limits with EAB and LPZ boundaries at 100 and 300 meters
  - Provides margin for multi-module sites
- The Plume EPZ may be set at approximately 850 meters

## (Partial) List of PB-FHR Opportunities and Challenges

#### Opportunities

- Simplified Safety Analysis
  - » Large fuel temperature margins, low-pressure system, single phase coolant, scaled experiments
- Flexible operation of NACC
- Low pressure system with thin-walled components
- Modular design and construction methods

#### Challenges

- Demonstrate tritium control strategy
- Procurement of flibe coolant with enriched Li-7
- Fuel fabrication and qualification
- High temperature materials with long-term creep

#### Future Potential

- New structural alloys for increased temperature/power
- Operational experience with salts could benefit MSR efforts